亚洲成年一级|甜心烊烊是麻豆传媒的吗|爱豆传媒凌萱是谁扮演的|91制片厂美凉子|萝莉社app链接|麻豆映画影视传媒网址|久久亚洲综合国产精品99麻豆精品福利|天美麻豆星空传媒|嘉尚传媒旗下爱豆有谁|91大神精品一区,亚洲成年激情,国产福利免费网,国产传媒91麻豆

首頁(yè)

當(dāng)前您的位置: 首頁(yè) > 學(xué)術(shù)講座 > 正文

【4月17日】Biomarker variability in joint analysis for longitudinal and survival data (縱向和生存數(shù)據(jù)聯(lián)合分析中指標(biāo)變化率問(wèn)題)

發(fā)布日期:2023-04-13點(diǎn)擊: 發(fā)布人:統(tǒng)計(jì)與數(shù)學(xué)學(xué)院

報(bào)告題目:Biomarker variability in joint analysis for longitudinal and survival data (縱向和生存數(shù)據(jù)聯(lián)合分析中指標(biāo)變化率問(wèn)題)

主講人:潘建新教授(北京師范大學(xué)-香港浸會(huì)大學(xué)聯(lián)合國(guó)際學(xué)院)

時(shí)間:2023年4月17日(周一)15:00 p.m.

地點(diǎn):北院卓遠(yuǎn)樓305會(huì)議室

主辦單位:統(tǒng)計(jì)與數(shù)學(xué)學(xué)院

摘要:The role of visit-to-visit variability of a biomarker in predicting related disease has been recently recognized in medical science. Existing measures of biological variability are criticized for being entangled with random variability resulted from measurement error or being unreliable due to a limited number of measurements for each individual. We propose a new measure to quantify the biological variability of a biomarker by evaluating the fluctuation of each individual-specific trajectory behind longitudinal processes. Given a mixed-effects model for longitudinal data with the mean function over time specified by cubic splines, the proposed variability measure can be expressed mathematically as a quadratic form of random effects. A Cox-type model is proposed for time-to-event data by incorporating the defined variability as well as the current level of the underlying longitudinal trajectory as covariates, which constitutes the joint modelling framework. Asymptotic properties of maximum likelihood estimators are established for the new joint model. Parameter estimation is implemented via an EM algorithm with fully exponential Laplace approximation to reduce the computation burden due to the increasing dimension of random effects. Simulation studies are conducted to reveal the advantage of the joint modelling method over the two-stage method. We apply the proposed model to investigate the effects of systolic blood pressure variability on cardiovascular events by analyzing an elderly trial data, which motivates actually this research work.Joint work with Dr Chunyu Wang of Cambridge University of the UK.

主講人簡(jiǎn)介:

潘建新教授是北京師范大學(xué)-香港浸會(huì)大學(xué)聯(lián)合國(guó)際學(xué)院的首席教授,。

潘建新教授的研究方向包括統(tǒng)計(jì)建模,、統(tǒng)計(jì)學(xué)習(xí)和數(shù)據(jù)科學(xué),,并將其應(yīng)用于醫(yī)學(xué),、公共衛(wèi)生,、金融和工業(yè),,在統(tǒng)計(jì)學(xué)和多學(xué)科研究領(lǐng)域的期刊上發(fā)表了130多篇學(xué)術(shù)論文,,在Springer出版社出版了3本專著,,曾多次主持英國(guó)和歐洲各研究委員會(huì)的基金項(xiàng)目,。潘教授是英國(guó)皇家統(tǒng)計(jì)學(xué)會(huì)會(huì)員,、國(guó)際統(tǒng)計(jì)研究協(xié)會(huì)成員和艾倫·圖靈數(shù)據(jù)科學(xué)與人工智能研究所會(huì)員,。他是英國(guó)皇家統(tǒng)計(jì)學(xué)會(huì)在曼徹斯特分部的主席,,并長(zhǎng)期擔(dān)任一些統(tǒng)計(jì)期刊的副主編,,包括“Biometrics”(2008-2018)、“Biostatistics and Epidemiology”(2013-),、“Biometrical Journal”(2016-),、“Journal of Multivariate Analysis”(2019-)和“Electronic Journal of Statistics”(2022-)。