亚洲成年一级|甜心烊烊是麻豆传媒的吗|爱豆传媒凌萱是谁扮演的|91制片厂美凉子|萝莉社app链接|麻豆映画影视传媒网址|久久亚洲综合国产精品99麻豆精品福利|天美麻豆星空传媒|嘉尚传媒旗下爱豆有谁|91大神精品一区,亚洲成年激情,国产福利免费网,国产传媒91麻豆

首頁

當(dāng)前您的位置: 首頁 > 學(xué)術(shù)講座 > 正文

Wrapped Gaussian Process Functional Regression Model for Batch Data on Riemannian Manifold

發(fā)布日期:2025-04-07點(diǎn)擊: 發(fā)布人:統(tǒng)計(jì)與數(shù)學(xué)學(xué)院

報(bào)告題目:Wrapped Gaussian Process Functional Regression Model for Batch Data on Riemannian Manifold

主講人:史建清教授(南方科技大學(xué))

時(shí)間:2025年4月16日(周三)15:30 p.m.

地點(diǎn):北院卓遠(yuǎn)樓305會(huì)議室

主辦單位:統(tǒng)計(jì)與數(shù)學(xué)學(xué)院


摘要:This talk will discuss concurrent functional regression models for batch data on Riemannian manifolds by estimating both mean structure and covariance structure simultaneously. The response variable is considered to follow a wrapped Gaussian process. Nonlinear relationship between manifold-valued response variables and multiple Euclidean covariates can be captured by this model in which the covariates could be either functional or scalar. Numerical results with both simulated data and real data will be presented to show the performance of the model.


主講人簡介:

史建清,南方科技大學(xué)統(tǒng)計(jì)與數(shù)據(jù)科學(xué)系和深圳國家應(yīng)用數(shù)學(xué)中心教授,理學(xué)院生物醫(yī)學(xué)統(tǒng)計(jì)中心主任,英國皇家統(tǒng)計(jì)學(xué)會(huì)會(huì)士,科技部“十四五重點(diǎn)項(xiàng)目主持、首席科學(xué)家。曾任英國國家艾倫圖靈研究院圖靈研究員,劍橋大學(xué)牛頓學(xué)院訪問研究員,英國紐卡斯?fàn)柎髮W(xué)(Newcastle University)統(tǒng)計(jì)學(xué)教授,紐卡斯?fàn)柎髮W(xué)云計(jì)算和大數(shù)據(jù)研究中心副主任。主要研究方向包括函數(shù)型數(shù)據(jù)分析,生物醫(yī)學(xué)統(tǒng)計(jì),缺失數(shù)據(jù)分析,meta-analysis等。在國際學(xué)術(shù)刊物上發(fā)表高水平學(xué)術(shù)論文100多篇,包括統(tǒng)計(jì)和醫(yī)學(xué)頂級(jí)期刊 JRSSB, JASA, Biometrika, Nature Medicine和British Medical Journal。現(xiàn)任J. of Computational and Graphical Statistics和Statistical Methods & Applications等期刊副主編, 曾任英國皇家統(tǒng)計(jì)協(xié)會(huì)《應(yīng)用統(tǒng)計(jì)》(JRSSC)等國際期刊副主編,Guest AE for JRSS discussion paper。獲IEEE康復(fù)游戲和健康國際年會(huì)最佳論文獎(jiǎng)、美國統(tǒng)計(jì)協(xié)會(huì)非參數(shù)統(tǒng)計(jì)分會(huì)年度最佳論文獎(jiǎng)。在Chapman & Hall 出版專著:Gaussian Process Regression Analysis for Functional Data。