報(bào)告題目:Multilinear Low-Rank Vector Autoregressive Modeling via Tensor Decomposition
主講人:練恒副教授(香港城市大學(xué))
時(shí)間:2019年11月28日(周四)10:00 a.m.
地點(diǎn):北院卓遠(yuǎn)樓305會(huì)議室
主辦單位:統(tǒng)計(jì)與數(shù)學(xué)學(xué)院
摘要:Abstract: The VAR model involves a large number of parameters so it can suffer from the curse of dimensionality for high-dimensional time series data. The reduced-rank coefficient model can alleviate the problem but the low-rank structure along the time direction for time series models has never been considered. We rearrange the parameters in the VAR model to a tensor form, and propose a multilinear low-rank VAR model via tensor decomposition that effectively exploits the temporal and cross-sectional low-rank structure. Effectiveness of the methods is demonstrated on simulated and real data.
主講人簡介:
練恒,現(xiàn)任香港城市大學(xué)數(shù)學(xué)系副教授,于2000年在中國科學(xué)技術(shù)大學(xué)獲得數(shù)學(xué)和計(jì)算機(jī)學(xué)士學(xué)位,2007年在美國布朗大學(xué)獲得計(jì)算機(jī)碩士,經(jīng)濟(jì)學(xué)碩士和應(yīng)用數(shù)學(xué)博士學(xué)位。研究方向包括高維數(shù)據(jù)分析,函數(shù)數(shù)據(jù)分析,機(jī)器學(xué)習(xí)等。在《Journal of the Royal Statistical Society,Series B》、《Journal of the American Statistical Association》等國際頂級統(tǒng)計(jì)學(xué)期刊上發(fā)表高水平學(xué)術(shù)論文30多篇。