亚洲成年一级|甜心烊烊是麻豆传媒的吗|爱豆传媒凌萱是谁扮演的|91制片厂美凉子|萝莉社app链接|麻豆映画影视传媒网址|久久亚洲综合国产精品99麻豆精品福利|天美麻豆星空传媒|嘉尚传媒旗下爱豆有谁|91大神精品一区,亚洲成年激情,国产福利免费网,国产传媒91麻豆

首頁

當(dāng)前您的位置: 首頁 > 學(xué)術(shù)講座 > 正文

【10月20日】數(shù)學(xué)學(xué)術(shù)講座

發(fā)布日期:2017-10-19點擊: 發(fā)布人:統(tǒng)計與數(shù)學(xué)學(xué)院

報告題目: Recent Developments in Numerical Methods of Finding Saddle Points and its Applications in Materials

報告人: 張磊研究員 北京大學(xué)北京國際數(shù)學(xué)研究中心、北京大學(xué)定量生物學(xué)中心

報告地點:云南財經(jīng)大學(xué)北院卓遠(yuǎn)樓305(統(tǒng)計與數(shù)學(xué)學(xué)院會議室)
報告時間:2017年10月20日(星期五)15:00-16:00

報告主持人:王漢權(quán)教授 統(tǒng)計與數(shù)學(xué)學(xué)院副院長

報告摘要:
Nucleation is one of the most common physical phenomena in physical, chemical, biological and materials sciences. Due to the difficulties and challenges in making direct experimental observation, many computational methods have been developed to model and simulate various nucleation events. In my talk, I will provide a sampler of some newly developed numerical algorithms that are widely applicable to many nucleation and phase transformation problems. I first describe some recent progress on the design of efficient numerical methods for computing saddle points and minimum energy paths, and then illustrate their applications to the study of nucleation events associated with several different physical systems. Nucleation is a complex multiscale problem. Development of efficient numerical algorithms and modeling approaches is bringing new light to this challenging subject.

報告人簡介:張磊博士現(xiàn)任北京大學(xué)北京國際數(shù)學(xué)研究中心、北京大學(xué)定量生物學(xué)中心研究員、博士生導(dǎo)師,為國家“青年千人計劃”入選者。曾獲北京大學(xué)學(xué)士學(xué)位、中國科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院碩士學(xué)位、美國賓州州立大學(xué)數(shù)學(xué)系博士學(xué)位。主要研究興趣為復(fù)雜生物系統(tǒng)的可計算建模,稀有事件及過渡態(tài)在生物中的應(yīng)用,噪聲對細(xì)胞命運和基因不確定性的影響,腸道隱窩的干細(xì)胞發(fā)育和細(xì)胞系模型。在大規(guī)模科學(xué)計算與數(shù)學(xué)建模,計算材料,計算生物等研究領(lǐng)域取得了許多創(chuàng)造性成果,并在Molecular Systems Biology、BMC Systems Biology、Commun. Comput. Phys.、Physical Review Letters等頂尖學(xué)術(shù)期刊發(fā)表論文。


報告題目: Non-relativistic limit of the nonlinear Dirac equation and its numerical methods

報告人: 蔡勇勇研究員 北京計算科學(xué)研究中心

報告地點:云南財經(jīng)大學(xué)北院卓遠(yuǎn)樓305(統(tǒng)計與數(shù)學(xué)學(xué)院會議室)
報告時間:2017年10月20日(星期五)16:00-17:00

報告主持人:王漢權(quán)教授 統(tǒng)計與數(shù)學(xué)學(xué)院副院長

報告摘要:
We consider the (nonlinear) Dirac equation in the non-relativistic limit regime, involving a small parameter inversely proportional to the speed of light. The (nonlinear) Dirac equation converges to the (nonlinear) Schrodinger equation in the non-relativistic limit. By a careful analysis, we obtain a semi-relativistic limit of the nonlinear Dirac equation, which enables a design of uniformly accurate multi-scale numerical method. The major difficulty of the problem is that the solution has a rapid oscillation in time depending on the small parameter.

報告人簡介:蔡勇勇博士現(xiàn)任中國工程物理研究院--北京計算科學(xué)研究中心研究員,為國家“青年海外高層次人才引進(jìn)計劃”入選者。曾獲北京大學(xué)學(xué)士學(xué)位、碩士學(xué)位、新加坡國立大學(xué)博士學(xué)位。在數(shù)值分析與科學(xué)計算、多相流數(shù)值計算方法等研究領(lǐng)域取得了許多創(chuàng)造性成果,并在SIAM Journal on Applied Math.,SIAM Journal of Numerical Analysis, Journal of Computational. Physics,Physical Review A,Mathematics of Computation等頂尖學(xué)術(shù)期刊發(fā)表論文20余篇。