報告題目:Bifurcation analysis in vector-borne disease models with delays
主講人:范桂紅教授(美國哥倫布州立大學)
時間:2023年11月10日(周五)20:00 p.m.
騰訊會議:971749850
主辦單位:統(tǒng)計與數(shù)學學院
摘要:Vector borne disease is a type of disease which is spread by vectors like mosquitoes or ticks and can infect human beings. Typical vector borne-disease includes West Nile virus, Lyme Disease, and Malaria etc. In this talk, we will talk about the modeling study of West Nile virus and Lyme Disease using delay differential equations. We used delay as our bifurcating parameters in both system we proposed and found interesting bifurcation results in both models including period doubling bifurcation, and fold bifurcation of period solutions as well as the existence of a bi-stability in the form of a boundary periodic solution and a positive periodic solution. For the tick’s model, we obtained the global bifurcation of the system using delay as the bifurcation parameters. The investigation on the complexity of the dynamical system offers a potential pathway to reveal the even more complicated transmission dynamics of vector-borne disease in reality. At the end, I will briefly introduce our recently finished a modeling work on CORVID-19.
主講人簡介:
范桂紅,女,教授,分別于2004年和2009從加拿大麥克馬斯特大學(McMaster University)獲得應用數(shù)學碩士學位和理學博士學位。于2009年2月至2011年八月在約克大學(York University)做博士后,2011年9月-2013年6月在亞利桑那州立大學(Arizona State University)做訪問教授(Visiting Assistant Professor). 從2013年7月起,任教于美國哥倫布州立大學,現(xiàn)擔任數(shù)學系系主任。主要研究興趣為泛函微分方程理論及其在生物數(shù)學中的應用,特別是時間滯后系統(tǒng)在媒介傳播疾病中的建模,理論分析,及其優(yōu)化控制。具體的研究課題包括以蚊子為媒介的西尼羅病的傳播及其預防,以蜱蟲為媒介的萊姆病在全球暖化下的影響。已在Journal of Dynamics and Differential Equations, Journal of Mathematical Biology, Journal of Differential Equations, One Health, Transboundary and Emerging Disease等國際刊物發(fā)表論文30余篇。曾在美國國家自然科學基金與美國女性數(shù)學會聯(lián)合的“Mentoring Travel Grant"支持下在Nimbio訪學科研一個月。積極參與各種學術(shù)交流和合作,多次被邀請在微分方程方向的主要會議作學術(shù)報告。作為合作組織者,多次向美國數(shù)學年會(JMM),生物數(shù)學年會(SMB),和SIAM年會,組織小組報告 (Scientific Special Sessions)。